Définition

De Didaquest
Aller à la navigationAller à la recherche

Une définition est une proposition qui dit ce qu'est une chose ou ce que signifie un mot.

Définition classique dite scolastique ou par la genre prochain et la différence spécifique

La définition (definitio) est l'expression énonçant l'équivalence d'un défini (definiendum) et de son définissant (definiens).

Le défini et le définissant doivent avoir la même extension.

Le définissant est l'espèce (species) dont relève le défini.

L'espèce est énoncée par le genre prochain et la différence spécifique (per genus proximus et differentiam specificam).

La différence spécifique (differentia specifica) est le caractère qui distingue une espèce des autres espèces d'un même genre.

Conceptions de la définition

L'inventeur de la définition serait, selon Aristote, Socrate. Socrate cherche en effet ce qui fait qu'une chose est telle qu'elle est : par exemple, dans l’Hippias majeur, pourquoi cette chose belle est-elle belle ? Il y aurait ainsi un caractère commun aux choses belles, une essence, dont la formulation est la définition.

Cependant, le point de départ de Socrate est existentiel : il s'agit de prendre conscience de ce que nous disons et de ce que nous faisons quand nous suivons des conceptions morales ou scientifiques. La définition permet de mettre à l'épreuve notre prétendu savoir, surtout quand Socrate montre à ses interlocuteurs qu'ils ne savent pas produire une définition cohérente de ce qu'ils pensent : ils ne pensent donc rien de défini, rien qui n'ait une extension précise et bien déterminée. Dans le meilleur des cas, ce sont des ignorants, dans le pire des imposteurs.

Les problèmes liés à la définition (en particulier le problème du paradoxe donné plus haut) ont été des motivations dans la recherche pour tous les philosophes. En effet, l'analyse des concepts et de ce que l'on veut dire, la recherche de l'extension des concepts que nous utilisons, est l'un des aspects majeurs de la philosophie, de Platon et Aristote à Locke, Hume et toute la philosophie anglo-saxonne notamment.

Logique

En logique, une définition est un énoncé qui introduit un symbole appelé terme dénotant le même objet qu’un autre symbole, ou associé à une suite appelée assemblage, de symboles dont la signification est déjà connue.

Certains symboles comme ceux de l'existence, l'appartenance, la négation etc. qui ne peuvent être définis, sont grossièrement introduits en faisant appel à des mots du langage naturel et à l’idée intuitive que l’homme peut en avoir. Ces termes primitifs appartiennent au « domaine intuitif de base ». (Concept des mots non définis utilisé par Alfred Korzybski)

En mathématiques, une définition est un énoncé écrit en langage naturel ou en langage formel (de la logique), qui introduit un nouveau mot ou symbole associé à un objet abstrait décrit par un assemblage d’autres mots ou symboles dont le sens a déjà été précisé.

L’idée que nous avons de l’objet ainsi défini, s’appelle une notion mathématique.

Ces mots ou symboles sont des « abréviations », destinées à représenter de tels assemblages de lettres et de symboles. Ces abréviations permettent à un mathématicien d’utiliser l’objet mathématique ainsi construit sans avoir à l’esprit sa définition complète et détaillée. Dans la pratique, les abréviations sont des lettres alphabétiques, des signes ou des mots ordinaires, par exemple :

  • π représente un nombre
  • e représente l’exponentielle de 1
  • « point » et « droite » sont des objets géométriques
  • Les signes + et × sont des « lois »

Donnons maintenant quelques exemples de définitions :

  • Soit A un nombre entier positif. Posons B=A.

Nous définissons B comme étant le même nombre représenté par A.

  • Soit D et D’ deux droites non parallèles. Soit I le point d’intersection de D et D’.

Nous définissons le point I et nous sommes supposés connaître ce que sont une droite, le parallélisme et un point d’intersection.

  • Un nombre entier naturel est dit premier s'il est différent de 1 et s’il n’admet comme diviseurs que 1 et lui-même.

Une définition n’est pas un théorème, elle donne simplement une dénomination à des objets mathématiques mais ne décrit pas de règles d’utilisation de ces objets ou de propriétés vérifiées par ces objets (autres que celles qui le définissent).

Lorsque nous définissons un objet, nous utilisons en général un « si » qui signifie « si par définition », « quand » ou « lorsque », comme dans la définition suivante :

Un nombre entier relatif n est pair si ∃k ∈ ℤ, n = 2k.

Certains utilisent maladroitement un « si et seulement si » à la place du « si », mais cela n’a pas de sens, puisqu’ils écrivent dans ce cas une équivalence entre un terme qui n’est pas une proposition qui, de plus, n’est pas encore défini et une proposition.

Si la définition d’un objet donné suppose qu’une proposition P soit vérifiée, alors l’affirmation « par définition » ou « en vertu de la définition » la proposition P est vérifiée signifie que nous utilisons la proposition P intrinsèque à l’objet. Considérons la définition suivante :

Modèle:Souligner : Un carré est un quadrilatère dont les côtés sont de même longueur et dont les angles sont droits.

Il est évident que tous les côtés d’un carré sont de longueur égale parce que cette propriété fait partie de la définition. Nous pouvons dire dans ce cas « par définition », un carré a tous ses côtés d’égale longueur.

Si un même objet mathématique (ou « être mathématique ») reçoit plusieurs définitions et que toutes les propriétés de l’une d’entre elles sont équivalentes à celles des autres, alors ces définitions sont dites équivalentes.

Une définition n’a de sens que dans le cadre d’une théorie mathématique donnée et par exemple il est impossible de considérer une fonction dérivable définie sur l’ensemble des entiers naturels à valeurs dans ℝ.

Dans un exposé mathématique, il arrive qu’une définition « intuitive » soit donnée avant la définition mathématique ; son rôle est de mettre en évidence les motivations d’une telle définition. Par exemple, des définitions de dictionnaire: explication d'un mot.

Notes et références

Bibliographie

Voir aussi