Catégorie:Apprentissage supervisé

De Didaquest
Aller à la navigationAller à la recherche

L'apprentissage supervisé (supervised learning en anglais) est une tâche d'apprentissage automatique consistant à apprendre une fonction de prédiction à partir d'exemples annotés, au contraire de l'apprentissage non supervisé. On distingue les problèmes de régression des problèmes de classement1. Ainsi, on considère que les problèmes de prédiction d'une variable quantitative sont des problèmes de régression tandis que les problèmes de prédiction d'une variable qualitative sont des problèmes de classification.

Les exemples annotés constituent une base d'apprentissage, et la fonction de prédiction apprise peut aussi être appelée « hypothèse » ou « modèle ». On suppose cette base d'apprentissage représentative d'une population d'échantillons plus large et le but des méthodes d'apprentissage supervisé est de bien généraliser, c'est-à-dire d'apprendre une fonction qui fasse des prédictions correctes sur des données non présentes dans l'ensemble d'apprentissage2.

Pages dans la catégorie « Apprentissage supervisé »

Cette catégorie comprend seulement la page ci-dessous.