Différences entre versions de « Equations du Premier Degré à une Inconnue »
Ligne 85 : | Ligne 85 : | ||
<!-- Remplacez, Adaptez, Ajoutez ou Supprimez les images et lignes non utilisées--> | <!-- Remplacez, Adaptez, Ajoutez ou Supprimez les images et lignes non utilisées--> | ||
− | Image: | + | Image:Résoudre_une_équation_du_premier_degré.png|Forme Générale d'une Equation du Premier Degré |
Image:Definition-graphique-concept3.png|Titre de Votre Image 3 | Image:Definition-graphique-concept3.png|Titre de Votre Image 3 | ||
Version du 12 janvier 2023 à 15:02
Votre Publicité sur le Réseau |
Traduction
Equations du Premier Degré à une Inconnue (Français)
/ First Degree Equation with One Unknown (Anglais)
/ معادلات درجة الأولى لمتغير واحد (Arabe)
Traductions
Définition
Domaine, Discipline, Thématique
Justification
Définition écrite
- L'équation ax+b=0, où a est un réel non nul, b est un réel et x est l'inconnue, est appelée équation du premier degré à une inconnue.
L'équation est dite du premier degré car l'exposant de l'inconnue est 1. Exemples: x+1=0 ; 2x+6=0 ; x-2=0 ; 2x-5=0 ; x/2 +5/3=0
- x0 est dite solution de l'équation ax+b=0 si et seulement si ax0+b=0
exemples: 2 est solution de l'équation x-2=0 car en remplaçant x par 2
dans l'équation, l'égalité est vérifiée: 2-2=0 ;
-3 est solution de l'équation 2x+6=0 car en remplaçant x par -3 dans l'équation, l'égalité est vérifiée.
Exemple: Les deux équations x-1=0 et 2x-2=0 sont équivalentes sur R car 1 est solution de l'équation x-1=0 et 1 est solution de l'équation 2x-2=0.
....................................................................... ....................................................................... |
Equations du Premier Degré à une Inconnue - Historique (+)
Définition graphique
Concepts ou notions associés
Equations du Premier Degré à une Inconnue - Glossaire / (+)
Exemples, applications, utilisations
................................................................................ ................................................................................ ................................................................................
................................................................................ ................................................................................ ................................................................................ |
Erreurs ou confusions éventuelles
- .........................................
- .........................................
Confusion possible ou glissement de sens
- Confusion entre ....... - ........
- Confusion entre ....... - ........
- ....................
Questions possibles
Liaisons enseignements et programmes
Idées ou Réflexions liées à son enseignement
Aides et astuces
Education: Autres liens, sites ou portails
Bibliographie
Pour citer cette page: (du Premier Degré à une Inconnue)
ABROUGUI, M & al, 2023. Equations du Premier Degré à une Inconnue. In Didaquest [en ligne]. <http:www.didaquest.org/wiki/Equations_du_Premier_Degr%C3%A9_%C3%A0_une_Inconnue>, consulté le 21, décembre, 2024
- ..................
- ..................
- ..................
- ..................