Différences entre versions de « Différence entre procaryote et eucaryote »

De Didaquest
Aller à la navigationAller à la recherche
Ligne 174 : Ligne 174 :
  
  
==== [[Evolution biologique des Procaryotes aux Eucaryotes]] ====
 
Appelé l'endosymbiose.
 
  
Selon la théorie endosymbiotique énoncée par Max Taylor (1979) puis par Lynn Margulis (1993), les cellules Eucaryotes proviennent de l'association de plusieurs Procaryotes.
 
Cette théorie s'appuie entre autre sur les éléments suivants :
 
la taille des mitochondries et des chloroplastes est semblable à celle des bactéries
 
chacun de ces organites possède un matériel génétique (ADN) qui lui est propre
 
chacun de ces organites possède le matériel nécessaire pour la synthèse protéique (ARNt, ribosomes, polymérases)
 
chacun de ces organites peut se diviser par étranglement médian (après avoir dupliqué le matériel génétique)
 
La théorie endosymbiotique de l'origine de la cellule Eucaryote postule que :
 
 
la mitochondrie dérive d'une bactérie respirante
 
le chloroplaste dérive des cyanobactéries
 
 
==== Organisation des cellules eucaryotes====
 
==== Organisation des cellules eucaryotes====
 
Comme dit précédemment, les cellules eucaryotes sont délimitées par une membrane (animaux) ou paroi (végétaux) et possèdent un noyau qui est l’organite contenant le génome de l’individu.
 
Comme dit précédemment, les cellules eucaryotes sont délimitées par une membrane (animaux) ou paroi (végétaux) et possèdent un noyau qui est l’organite contenant le génome de l’individu.
Ligne 496 : Ligne 484 :
 
</td> </tr> </table>   
 
</td> </tr> </table>   
 
: '''Tableau: Comparaison des caractéristiques des cellules Procaryotes et Eucaryotes'''
 
: '''Tableau: Comparaison des caractéristiques des cellules Procaryotes et Eucaryotes'''
 +
 +
==== [[Evolution biologique des Procaryotes aux Eucaryotes]] ====
 +
    '''La théorie endosymbiotique'''
 +
 +
Dès le début du 20 ème siècle les chercheurs ont pensé que les plastes et les mitochondies pouvaient provenir de bactéries. Celles-ci auraient été ingérées par des cellules primitives et vivraient à l'intérieur d'elles en symbiose. Cette théorie endosymbiotique de l'origine des plastes et des mitochondries est devenue parfaitement plausible lorsque l'on a découvert (1950-1960) que ces organites contenaient de l'ADN et des ribosomes.
 +
La ressemblance entre un chloroplaste de cellule eucaryote actuelle et d'une bactérie photosynthétique (Cyanobactérie) est confortée par plusieurs caractères :
 +
 +
l'ADN du chloroplaste est circulaire et non associé à des histones comme chez les bactéries,
 +
cet ADN code pour une partie des protéines chloroplastiques (organites semi autonomes),
 +
une partie de la synthèse de protéines chloroplastiques s'effectue dans le chloroplaste, grâce à la présence de ribosomes qui présentent des analogies avec les ribosomes bactériens,
 +
tout plaste provient d'un plaste préexistant. Lorsque des cellules ne possèdent pas de plaste (certains cellules blanches de feuilles panachées), les cellules filles ne possèdent pas de plaste,
 +
la division des chloroplastes suit un rythme indépendant de la division du noyau,
 +
chez les plantes supérieures, les deux membranes de l'enveloppe du chloroplaste sont différentes : la membrane interne ainsi que les membranes des thylacoïdes présentent des analogies (composition lipidique) avec les membranes bactériennes.
 +
L'ensemble de ces observations représente aujourd'hui des arguments forts de la théorie endosymbiotique. Les endosymbioses ont pu se réaliser à différents moments et de diverses façons, par absorption par une cellule (Procaryote ou Eucaryote) primitive d'une autre cellule (Procaryote ou Eucaryote). On parle alors d'endosymbiose primaire ou secondaire.
 +
<gallery>
 +
Symbiose1.gif|Description 1
 +
Absorption d'une bactérie par une cellule eucaryote primitive et formation d'une cellule eucaryote hétérotrophe. Les bactéries absorbées deviennent des mitochondries et réalisent la respiration.
 +
<gallery>
 +
Symbiose2.gif|Description 1
 +
Réalisation d'une cellule eucaryote autotrophe par absorption d'une bactérie photosynthétique par une cellule eucaryote hétérotrophe. Cette bactérie devient un chloroplaste, ses membranes internes ont une origine bactérienne. La membrane externe de l'enveloppe a pour origine la membrane plasmique de la cellule elle-même.
 +
</gallery>
 +
 +
</gallery>
  
  

Version du 28 janvier 2021 à 00:20


Autres Fiches Conceptuelles
Posez une Question


(+)

Target Icon.pngVotre Publicité sur le Réseau Target Icon.png

Puce-didaquest.png Traduction


More-didaquest.png Traductions


Puce-didaquest.png Définition

Domaine, Discipline, Thématique


More-didaquest.png Justification


Définition écrite



More-didaquest.png Différence entre procaryote et eucaryote - Historique (+)


Définition graphique




Puce-didaquest.png Concepts ou notions associés


More-didaquest.png Différence entre procaryote et eucaryote - Glossaire / (+)



Puce-didaquest.png Exemples, applications, utilisations

  • Dans le domaine de la bactériologie médicale;La coloration de Gram doit son nom au bactériologiste danois Hans Christian Gram qui mit au point le protocole en 1884. C'est une coloration qui permet de mettre en évidence les propriétés de la paroi bactérienne, et d'utiliser ces propriétés pour distinguer et classifier les bactéries. Son avantage est de donner une information rapide, facile et bon marché sur les bactéries présentes dans un produit ou un milieu, tant sur le type que sur la forme.

-La coloration de Gram est la méthode de coloration la plus utilisée, elle permet de colorer les bactéries et de les distinguer à l'examen direct par leur aptitude à fixer le violet de gentiane (Gram +) ou la fuschine (Gram -). - L'intérêt de cette coloration est de donner une information rapide et médicalement importante. La coloration de Gram est fondée sur l'action successive d'un colorant d'aniline, le cristal violet, d'iode puis d'un mélange d'alcool et d'acétone. Dans un premier temps, le colorant pénètre dans la paroi et le cytoplasme. Dans un second temps, l'iode réagit avec le colorant et le rend insoluble. La perméabilité plus grande des bactéries à Gram négatif à l'alcool permet la décoloration. Les bactéries à Gram positif restent colorées en violet ou mauve. Une contre-coloration (par exemple en rose) permet de visualiser à nouveau, les corps cellulaires des bactéries à Gram négatif.

  • Dans le domaine de la microbiologieLa coloration de Gram est fréquemment utilisée en microbiologie pour mettre en évidence les bactéries Gram positif/négatif. Cela permet de différencier et de classer les différentes populations de micro-organismes.

Par exemple, lorsqu'il y a suspicion d'infection de l'organisme dans une biopsie, on pourra utiliser cette coloration suivie d'une analyse histopathologique pour émettre un diagnostic. Cette méthode a l'avantage d'être plus rapide qu'une culture classique.

Les bactéries détectées sont classées en deux catégories. À titre d'exemples : Les staphylocoques et les streptocoques, bactéries à Gram +, apparaissent en violet ; Escherichia coli, entérobactérie à Gram -, apparaît sous forme de bacille rose/rouge (en fonction de la contre-coloration fuchsine ou safranine).


(+)


Puce-didaquest.png Erreurs ou confusions éventuelles



Puce-didaquest.png Questions possibles



Puce-didaquest.png Liaisons enseignements et programmes

Idées ou Réflexions liées à son enseignement



Aides et astuces



Education: Autres liens, sites ou portails




Puce-didaquest.png Bibliographie