Différences entre versions de « Virus »

De Didaquest
Aller à la navigationAller à la recherche
Ligne 399 : Ligne 399 :
 
[[Fichier:Réplication et transcription du génome viral.png|vignette|Réplication_et_transcription_du_génome_viral.png]]
 
[[Fichier:Réplication et transcription du génome viral.png|vignette|Réplication_et_transcription_du_génome_viral.png]]
  
 +
'''a. Exemple du virus de la grippe (influenza virus)'''
 +
1. Après la fusion des membranes virale et endosomale, les ribonucléoprotéines virales (vRNP, "viral ribonucleoproteins") sont libérées dans le cytoplasme de la cellule hôte puis transportées dans le noyau (figure ci-dessous). Le terme ribonucléoprotéine désigne l'ARN génomique encapsidé.
 +
Dans le noyau :
  
 +
2. D'une part l'ARN polymérase dépendante de l'ARN viral ("viral RNA-dependent RNA polymerase") réplique les 7 ou 8 segments (influenza A, B ou C) de l'ARN viral simple brin à polarité (-) (vRNA, "single-stranded negative-sense viral RNA") en ARN complémentaires (cRNA, "complementary RNA"). Les cRNA sont des ARN à polarité (+) qui forment des ribonucléoprotéines complémentaires (cRNP, "complementary RNP") et servent de matrices pour la synthèse de vRNA.
 +
3. D'autre part, l'ARN polymérase virale effectue également la transcription des segments de vRNA en ARN messagers (mRNA, maturés avec la coiffe ("cap") en 5' et la queue polyadénylée en 3' (An)). Les ARN messagers sont exportés vers le cytoplasme et y sont traduits.
 +
[[Fichier:Replication et transcription du virus de grippe.png|vignette|Replication_et_transcription_du_virus_de_grippe.png]]
  
 +
4. Les sous-unités d'ARN polymérases virales nouvellement synthétisées (trimère constitué des polymérases basiques 1 et 2, PB1 et PB2, et de la polymérase acide, PA) et la nucléoprotéine (NP) sont à leur tour importées dans le noyau : elles se lient aux segments génomiques de vRNA et aux cRNA pour assembler les vRNP et les cRNP, respectivement. NP encapside le vRNA et le protége des nucléases.
  
 +
5. Les vRNP nouvellement synthétisées sont exportées dans le cytoplasme. Elles sont transportés (de manière dépendante de RAB11) dans des endosomes de recyclage vers la membrane cellulaire.
  
 +
6. L'assemblage des nouveaux virions s'effectue au niveau de la membrane cellulaire en incorporant de nombreuses protéines de la cellule hôte.
 +
 +
7. Enfin, les virions matures sont libérés par bourgeonnement.
 +
'''b. Exemple du virus HIV-1'''
 +
1. Le cycle du rétrovirus HIV-1 commence par la liaison des glycoprotéines de l'enveloppe virale aux récepteurs de la cellule hôte, suivie de la fusion des membranes virale et cellulaire puis de la libération du "noyau viral" dans le cytoplasme de la cellule hôte (figure ci-dessous).
 +
 +
Le "noyau viral" contient :
 +
 +
La protéine de la capsule virale p24 (qui entoure deux simples brins d'ARN) liée à la protéine p7 de la nucléocapside et à la protéine d'assemblage tardif p6.
 +
Il contient également des enzymes nécessaires à la réplication du virus (exemples : la transcriptase inverse, la protéase, la ribonucléase et l'intégrase et de nombreuses protéines cellulaires).
 +
2. L'ARN viral subit une transcription inverse en ADN par la transcriptase inverse virale et la capside est désassemblée.
 +
 +
3. L'ADN viral nouvellement formé est assemblé sous forme d'un complexe de pré-intégration ("pre-integration complex", CPI) avec l'intégrase et certaines protéines de la capside et cellulaires.
 +
[[Fichier:Replication et transcription du virus HIV-1.png|vignette|Replication_et_transcription_du_virus_HIV-1.png]]
 +
 +
4. Le CPI entre dans le noyau au travers des complexes de pores nucléaires. L'entrée s'effectue dans des cellules qui ne sont pas en division : les chromosomes y sont séparés du cytoplasme par l'enveloppe nucléaire.
 +
 +
5. Le CPI assure l'intégration de l'ADN viral dans le génome de la cellule hôte :
 +
 +
Bien que l'intégration du génome viral puisse avoir lieu à différents endroits de celui de la cellule hôte, elle cible de préférence les régions à forte densité en gènes et à forte activité de transcription.
 +
Plusieurs facteurs influencent la sélection du site cible de l'intégration : la voie d'entrée dans le noyau, la phase du cycle cellulaire, la structure de la chromatine et la spécificité des séquences sous-jacentes, l'interaction de l'intégrase virale avec la chromatine (exemple, le facteur de croissance dérivé de l'épithélium de la lentille ("lens-epithelium-derived growth factor")).
 +
6. Si l'infection est productive, les transcrits viraux sont épissés et exportés du noyau. Il s'en suit l'assemblage de nouvelles particules virales qui sont produites via la membrane plasmique et deviennent infectieuses après maturation.
 +
 +
7. Alternativement, l'ADN viral intégré dans le génome de la cellule hôte peut être temporairement "silencieux" via plusieurs mécanismes qui aboutissent à la formation de réservoirs viraux "en attente" (phénomène de latence pro-virale).
 +
== 6. L a capside ==
 +
À quelques exceptions près, les capsides des virus non enveloppés sont construites à partir d'une protéine de capside dite majeure (qui détermine l'assemblage et l'architecture du virion) et de une ou plusieurs protéines de capsides dites mineures.
 +
 +
Les nucléocapsides des virus enveloppés sont souvent construites à partir d'un complexe nucléoprotéique [protéine - génome viral], des protéines de la matrice (qui relient la nucléoprotéine à la membrane lipidique) et des protéines d'enveloppe (pour la reconnaissance de l'hôte et la fusion membranaire.)
 +
 +
Les capsides peuvent être icosaédrales (figure de gauche, ci-dessous), hélicoïdales (figure de droite) ou complexes :
 +
[[Fichier:Capside virale.png|vignette|Capside_virale.png]]
 +
L'inhibition de la protéolyse de la capside virale (pour former les peptides hydrophobes qui pénètrent dans les membranes) génère des capsides hyperstables incapables de suivre le chemin habituel du désassemblage.
 +
Les distributions de la densité des longueurs en acides aminés des protéines des capsides et des protéines n'appartenant pas aux capsides montrent que les premières sont organisées en domaines structuraux plus grands (certains domaines complexes pouvant être constitués de plus de 600 résidus).
 +
 +
'''a. Le repliement "jelly roll"'''
 +
 +
Un grand nombre de virus (environ 38,5%) possèdent des protéines de la capside qui adoptent un repliement appelé "jelly roll" :
 +
 +
La structure 3D des protéines appelée "jelly roll" est constituée de 8 brins β qui forment 2 feuillets de 4 brins antiparallèles : c'est une variante de la topologie dite en "clé grecque" avec les deux extrémités d’un repliement en tonneau traversées par deux connexions inter-brins.
 +
La forme trapézoïdale de ce repliement révèle 6 surfaces propices à des interactions [monomère - monomère].
 +
Cette prévalence de repliement des protéines de la capside pourrait être liée à sa facilité relative de pavage.
 +
Cette architecture de la capside résulterait des relations évolutives datant du dernier ancêtre commun universel (LUCA).
 +
Au moins 16 familles de virus (à ARN et à ADN) contiennent des protéines de capside (principalement icosaédriques) qui adoptent un repliement "jelly roll" unique :
 +
 +
La majorité des virus à repliement "jelly roll" unique sont des virus à ARN simple brin à polarité (+).
 +
Les seuls virus à ADN double brin à repliement "jelly roll" unique sont les petits virus Papillomaviridae et les Polyomaviridae.
 +
Certaines familles de virus construisent leurs capsides avec des protéines qui adoptent un repliement "jelly roll" double (2 repliements simples reliés), voire triple.
 +
 +
'''b. Le nombre de triangulation T'''
 +
 +
La description des structures des capsides virales en forme de sphère repose sur le "principe de quasi-équivalence" de D. Caspar & A. Klug (A. Klug a obtenu le Prix Nobel de chimie en 1982) :
 +
 +
Ce principe démontre que les coques icosaédriques fermées peuvent être construites à partir de pentamères et d'hexamères en minimisant le nombre T d'emplacements non équivalents occupés par les sous-unités.
 +
Le nombre de triangulation T a les valeurs entières particulières 1, 3, 4, 7, 12, 13, ... avec T = h2 + k2 + hk (h et k sont des entiers non négatifs).
 +
De manière générale Le nombre de triangulation T est une métrique utile pour la mesure quantitative de la taille d'une capside : dans la plupart des cas, une capside de nombre de triangulation T est constituée de 60T sous-unités, ou 12 pentamères et 10 (T-1) hexamères.
 +
 +
Ces structures caractérisent la grande majorité des virus sphériques, par exemple la capside du bromovirus CCMV ("cowpea chlorotic mottle virus") qui a une structure T = 3.
 +
[[Fichier:Triangulation T.png|vignette|Triangulation_T.png]]
  
 
*......................................................................
 
*......................................................................

Version du 23 février 2021 à 06:25


Autres Fiches Conceptuelles
Posez une Question


(+)

Target Icon.pngVotre Publicité sur le Réseau Target Icon.png

Puce-didaquest.png Traduction


More-didaquest.png Traductions


Puce-didaquest.png Définition

Domaine, Discipline, Thématique


More-didaquest.png Justification


Définition écrite


  • ......................................................................

....................................................................... ....................................................................... .......................................................................

  • ......................................................................

....................................................................... .......................................................................


More-didaquest.png Virus - Historique (+)


Définition graphique




Puce-didaquest.png Concepts ou notions associés


More-didaquest.png Virus - Glossaire / (+)



Puce-didaquest.png Exemples, applications, utilisations


Blue-circle-target.pngVirus dans des études biologiques Des virus ont été employés considérable dans des études moléculaires et de biologie cellulaire. Ces virus fournissent l'avantage d'être des systèmes simples qui peuvent être employés pour manipuler et vérifier les fonctionnements des cellules. Des virus ont été employés considérable dans la recherche en matière de génétique et compréhension des gènes et la réplication de l'ADN, transcription, formation d'ARN, traduction, formation de protéine et éléments de l'immunologie.
Blue-circle-target.pngVirus en médicament Des virus sont employés comme vecteurs ou transporteurs qui prennent le matériau exigé pour la demande de règlement d'une maladie aux cellules cibles variées. Ils ont été étudiés considérable dans le management des maladies héritées et génie génétique ainsi que les cancers.
Blue-circle-target.pngVirus dans le traitement de bactériophage Ce sont hautement des virus de spécificité qui peuvent viser, infectent, et (si correctement sélecté) détruisez les bactéries pathogènes. On pense que des bactériophages sont le type le plus nombreux de virus représentant la majorité des virus présents sur terre. Ce sont les outils fondamentaux en biologie moléculaire. Ils ont été recherchés pour leur usage dans le traitement.
Blue-circle-target.pngVirus en nanotechnologie La nanotechnologie traite les particules microscopiques. Celles-ci ont des utilisations variées dans la biologie et le médicament et la nanotechnologie a été employé en génie génétique. Des virus peuvent être employés comme transporteurs pour des séquences génétiquement modifiées des génomes aux cellules hôte.
Blue-circle-target.pngVirus dans l'agriculture Des méthodes de modification et de génie génétique peuvent être employées pour effectuer les génomes modifiés qui peuvent être transportés dans des végétaux et animaux par des virus agissant en tant que vecteurs ou véhicules. Cette méthode peut mener à des animaux et végétaux transgéniques plus productifs.
Blue-circle-target.pngVirus dans la prévention et traitement du cancer Des modifications assimilées (comme végétaux et animaux dans l'agriculture) des êtres humains n'ont pas été essayées pour technique et des raisons éthiques. Mais la modification des gènes des cellules des personnes a été à l'étude depuis de nombreuses années. Ceci est connu comme thérapie génique. L'élément clé de la thérapie génique est l'introduction des gènes de fonctionnement dans les cellules d'un patient humain. Ce gène neuf montre a désiré des fonctionnements et rectifie les gènes défectueux ou non de fonctionnement dans ces cellules L'objectif le plus courant a été des cancers, représentant presque deux-tiers de tous les tests cliniques jusqu'à présent. Les adénovirus sont très utilisés comme vecteurs, et peuvent être conçus pour améliorer la ville de fi de speci et pour réduire à un minimum des effets non désirés
Blue-circle-target.pngVirus et vaccins Des virus ont été employés depuis l'époque d'Edouard Jenner dans les vaccins. Jenner a employé des pox-viridae de vache pour inoculer des gens contre la petite infection de varicelle. Vaccins contre la poliomyélite, la rougeole, l'utilisation de la varicelle etc. sous tension et les virus affaiblis entraînant la maladie ou les particules mortes de virus. Celles-ci, une fois introduites dans une personne en bonne santé, aident le système immunitaire pour identifier et monter une immunité contre le virus. Le fuselage rappelle l'organisme et les crises il en cas d'infection postérieure évitant de ce fait la maladie.
Blue-circle-target.pngVaccins pour la prévention contre le cancer Les vaccins pour l'hépatite B et ceux pour des papillomavirus humains se protègent contre le foie et le cancer cervical respectivement. Les deux emploient les protéines sélectées du virus (vaccins de sous-unité)
Blue-circle-target.pngtraitement Virus-dirigé de prodrogue d'enzymes (VDEPT) C'est un traitement quand les cellules cibles sont insérées avec de l'enzyme qui peut activer un inactif un précurseur ou une forme inactive d'un médicament cytotoxique qui est administré systémiquement. Ainsi, la forme active et cytotoxique du médicament est seulement produite où l'enzyme appropriée est présente et en activité. Par exemple, un adénovirus exprimant l'enzyme (TK) de thymidine kinase du virus herpès simplex peut être combiné avec la gestion systémique du ganciclovir, qui est converti par le TK en sa forme active seulement en cellules où cette enzyme est présente. Ceci est employé dans la demande de règlement de VIH
Blue-circle-target.pngVirus et lutte biologique contre les parasites Des virus peuvent également être employés pour régler les parasites dommageables. Traditionnellement ceci a été employé dans l'agriculture, mais les applications existent dans le contrôle des agents importants pour la santé des personnes aussi bien. Les types d'agents utilisés à cet effet peuvent attaquer sur la substance d'objectif, peuvent être des parasites sur les parasites d'objectif, être des agents pathogènes ou entraîner la maladie dans la substance d'objectif ou peuvent être des substances de concurrence. Les virus utilisés pour le contrôle des parasites sont couramment des agents pathogènes entraînant la maladie de la substance d'objectif. Bien qu'ils représentent un peu d'utilisation totale de pesticide, des virus sont employés pour le contrôle de la substance multiple des insectes et également pour des lapins.Les agents biologiques peuvent produire des effets durables et peuvent dans certains cas écarter parmi la population cible. Ils également ont été identifiés par nature en tant que moins de toxique que les pesticides conventionnels par l'Agence de Protection de l'Environnement des USA. Leurs désavantages comprennent la gamme limitée de l'action, des effets lents comparés aux agents chimiques, des coûts de traitement initial élevés, de la stabilité environnementale inférieure, en particulier au soleil etc.
Blue-circle-target.pngVirus dans les armes et la guerre biologique Les virus peuvent être minuscules mais avoir la capacité d'entraîner la mort et la dévastation à de grandes populations dans les épidémies et les pandémies. Ceci a mené à la préoccupation que des virus pourraient être employés pour la guerre biologique


(+)


Puce-didaquest.png Erreurs ou confusions éventuelles



Puce-didaquest.png Questions possibles



Puce-didaquest.png Liaisons enseignements et programmes

Idées ou Réflexions liées à son enseignement



Aides et astuces



Education: Autres liens, sites ou portails




Puce-didaquest.png Bibliographie