Les triangles
Votre Publicité sur le Réseau |
Traduction
Traductions
Définition
Domaine, Discipline, Thématique
Justification
Définition écrite
Un triangle est une figure géométrique plane qui se compose de trois points appelés sommets, reliés par trois segments de droite appelés côtés. Voici une définition détaillée d'un triangle en tenant compte des concepts précédemment discutés :
- Sommets (Vertices) : Un triangle a exactement trois sommets, qui sont des points où deux côtés se rencontrent. Les sommets sont généralement étiquetés par des lettres majuscules A, B et C.
- Côtés (Sides) : Un triangle est défini par ses trois côtés, qui sont les segments de droite reliant les sommets. Les côtés sont généralement étiquetés par les lettres minuscules a, b et c. Le côté opposé au sommet A est généralement appelé "côté a", le côté opposé au sommet B est appelé "côté b", et le côté opposé au sommet C est appelé "côté c".
- Angles (Angles) : Chaque sommet d'un triangle forme un angle. Les angles sont généralement étiquetés en utilisant des lettres grecques, telles que α (alpha) pour l'angle au sommet A, β (bêta) pour l'angle au sommet B, et γ (gamma) pour l'angle au sommet C.
- Types de triangles (Types of Triangles) : Les triangles peuvent être classés en fonction de leurs côtés et de leurs angles :
- Triangle équilatéral : Les trois côtés et les trois angles sont égaux.
- Triangle isocèle : Deux côtés et deux angles sont égaux.
- Triangle scalène : Les trois côtés et les trois angles sont tous différents.
- Triangle rectangle : L'un des angles est un angle droit (90 degrés).
- Propriétés (Properties) : Les triangles ont des propriétés géométriques importantes, notamment le théorème de Pythagore pour les triangles rectangles, les théorèmes des médianes et des bissectrices, les règles de l'inégalité triangulaire, et les lois des sinus et des cosinus pour les triangles quelconques.
- Calcul de l'aire (Area Calculation) : L'aire d'un triangle peut être calculée de plusieurs manières, notamment en utilisant la formule de base x hauteur / 2, la formule d'Héron pour les triangles quelconques, ou en utilisant la trigonométrie pour les triangles rectangles.
- Applications (Applications) : Les triangles sont largement utilisés dans de nombreux domaines, notamment les mathématiques, la géométrie, la trigonométrie, la physique, l'ingénierie, la cartographie, l'art, l'architecture, et bien d'autres.
Un triangle est une figure géométrique constituée de trois sommets reliés par trois côtés, avec des propriétés et des classifications basées sur les longueurs de ses côtés et les mesures de ses angles. Les triangles ont une grande importance dans de nombreuses disciplines et sont étudiés en détail pour comprendre leurs propriétés et leurs applications.
....................................................................... ....................................................................... .......................................................................
....................................................................... ....................................................................... |
Les triangles - Historique (+)
Définition graphique
- AUTRES MEDIAS
triangles Les triangles
triangles Les triangles
Représentation graphique spatiale Les triangles
Concepts ou notions associés
[[HypoténuseL'hypoténuse d'un triangle est le côté le plus long de ce triangle, et il est opposé à l'angle droit (si le triangle est un triangle rectangle, c'est-à-dire un triangle qui a un angle égal à 90 degrés). Dans un triangle rectangle, l'hypoténuse est le côté situé en face de l'angle droit, et les deux autres côtés sont appelés les côtés adjacents et opposés.]] / Sommet / vertex / Base / Altitude / Médiane / Bissectrice / Théorème de Pythagore / Trigonométrie / Triangle équilatéral / Triangle isocèle / Triangle rectangle / Théorème de l'aire / Théorème des angles d'un triangle / Théorème de l'angle extérieur / Théorème de la médiane / Théorème de la bissectrice / Géométrie du triangle / Triangulation / Transformation de similitude / Sphère trigonométrique / Théorème de l'inégalité triangulaire / Triangle scalène / Triangle obtusangle / Triangle acutangle / Théorème d'Héron / Triangle de Pascal / Centre de gravité (centroïde) / Théorème de l'angle inscrit / Triangle de Sierpinski / Triangle de Penrose / Triangle aplati /
[[Category:HypoténuseL'hypoténuse d'un triangle est le côté le plus long de ce triangle, et il est opposé à l'angle droit (si le triangle est un triangle rectangle, c'est-à-dire un triangle qui a un angle égal à 90 degrés). Dans un triangle rectangle, l'hypoténuse est le côté situé en face de l'angle droit, et les deux autres côtés sont appelés les côtés adjacents et opposés.|HypoténuseL'hypoténuse d'un triangle est le côté le plus long de ce triangle, et il est opposé à l'angle droit (si le triangle est un triangle rectangle, c'est-à-dire un triangle qui a un angle égal à 90 degrés). Dans un triangle rectangle, l'hypoténuse est le côté situé en face de l'angle droit, et les deux autres côtés sont appelés les côtés adjacents et opposés.]]
Les triangles - Glossaire / (+)
Exemples, applications, utilisations
................................................................................ ................................................................................ ................................................................................
................................................................................ ................................................................................ ................................................................................ |
Erreurs ou confusions éventuelles
- .........................................
- .........................................
Confusion possible ou glissement de sens
- Confusion entre la Base - Altitude
- Confusion entre la Bissectrice - Médiane
- Confusion entre lesCôtés - Angles correspondants
- Confusion entre lesCôtés - Angles
- Confusion entre les types de triangles Equilatéral- Isocèle Scalène
- Confusion entre les différentes formules de calcul de l'aire d'un triangle.
- Confusion entre le Théorème de l'angle extérieur - Théorème de l'angle intérieur
- Confusion entre la Somme des angles d'un triangle - Somme des angles d'un quadrilatère
- Confusion entre les Côtés opposés - Côtés adjacents dans les triangles rectangles.
- Confusion entre la Hauteur - Longueur d'un côté dans le calcul de l'aire.
- Confusion entre la Trigonométrie dans un triangle rectangle - Trigonométrie dans un triangle quelconque
- Confusion entre les termes Hypoténus - Côté adjacent dans un triangle rectangle.
- Confusion entre les concepts de Triangle semblable - Triangle congruent (identique)
- Confusion entre les théorèmes de Angle opposé - Angle adjacent dans la trigonométrie.
- Confusion entre les notations de Côtés - Angles dans un triangle (utilisation incorrecte de lettres comme a, b, c pour les côtés et A, B, C pour les *angles).
- Confusion dans l'application de la règle de l'inégalité triangulaire.
- Confusion entre les termes Côté adjacent - Côté opposé dans les fonctions trigonométriques.
- Confusion dans la classification des triangles selon leurs angles Obtus- Droit -Aigu et selon leurs côtés Scalène- Isocèle- Equilatéral
- Confusion entre le périmètre - Aire d'un triangle.
- Confusion dans l'utilisation des fonctions trigonométriques Sinus - Cosinus -Tangente dans des contextes différents.
- Confusion dans l'application du théorème de l'angle inscrit dans le cas de triangles inscrits dans des cercles.
- ....................
Questions possibles
Liaisons enseignements et programmes
Idées ou Réflexions liées à son enseignement
Aides et astuces
Education: Autres liens, sites ou portails
Bibliographie
Pour citer cette page: (triangles)
ABROUGUI, M & al, 2023. Les triangles. In Didaquest [en ligne]. <http:www.didaquest.org/wiki/Les_triangles>, consulté le 24, novembre, 2024
- ..................
- ..................
- ..................
- ..................
- Sponsors Education
- Mathématiques (Concepts)
- Géométrie (Concepts)
- ....... (Concepts)
- Sommet
- Vertex
- Base
- Altitude
- Médiane
- Bissectrice
- Théorème de Pythagore
- Trigonométrie
- Triangle équilatéral
- Triangle isocèle
- Triangle rectangle
- Théorème de l'aire
- Théorème des angles d'un triangle
- Théorème de l'angle extérieur
- Théorème de la médiane
- Théorème de la bissectrice
- Géométrie du triangle
- Triangulation
- Transformation de similitude
- Sphère trigonométrique
- Théorème de l'inégalité triangulaire
- Triangle scalène
- Triangle obtusangle
- Triangle acutangle
- Théorème d'Héron
- Triangle de Pascal
- Centre de gravité (centroïde)
- Théorème de l'angle inscrit
- Triangle de Sierpinski
- Triangle de Penrose
- Triangle aplati
- Concepts
- Les triangles
- Les triangles (Concepts)
- Fiche conceptuelle didactique