Les triangles

De Didaquest
Aller à la navigationAller à la recherche


Autres Fiches Conceptuelles
Posez une Question


(+)

Target Icon.pngVotre Publicité sur le Réseau Target Icon.png

Puce-didaquest.png Traduction


More-didaquest.png Traductions


Puce-didaquest.png Définition

Domaine, Discipline, Thématique


More-didaquest.png Justification


Définition écrite


En mathématiques, les triangles sont des figures géométriques composées de trois côtés et trois angles. Ils sont l'un des polygones les plus simples mais aussi les plus fondamentaux. Voici quelques concepts clés liés aux triangles en mathématiques :

    • [Classification des Triangles] :

Triangle Équilatéral : Un triangle ayant tous ses côtés de même longueur. Triangle Isocèle : Un triangle avec au moins deux côtés de même longueur. Triangle Scalène : Un triangle dont tous les côtés ont des longueurs différentes.

    • [Angles d'un Triangle] :

La somme des trois angles intérieurs d'un triangle est toujours égale à 180degrés (Théorème des angles d'un triangle). Chaque angle extérieur d'un triangle est égal à la somme des deux angles intérieurs non adjacents.

    • [Triangle Rectangle] :

Un triangle qui a un angle droit, c'est-à-dire un angle mesurant exactement 90 degrés. Le théorème de Pythagore s'applique aux triangles rectangles.

    • [Médianes, Bissectrices, Hauteurs]] :

Les médianes d'un triangle sont des segments reliant chaque sommet au milieu du côté opposé. Les bissectrices divisent les angles du triangle en deux angles égaux. Les hauteurs sont des segments perpendiculaires aux côtés opposés à partir de chaque sommet.

    • [Trigonométrie dans les Triangles ]:

Les fonctions trigonométriques (sinus, cosinus, tangente, etc.) sont souvent utilisées pour résoudre des problèmes impliquant des triangles. Lois des Triangles : La Loi des cosinus et la Loi des sinus sont utilisées pour résoudre des triangles quelconques. Les triangles sont omniprésents en mathématiques et ont des applications dans de nombreux domaines tels que la trigonométrie, la géométrie analytique, la géométrie projective, et bien d'autres. Les propriétés et les théorèmes liés aux triangles jouent un rôle central dans l'étude de la géométrie.

En géométrie, un triangle est une figure plane composée de trois côtés et trois angles. C'est le polygone le plus simple et le plus fondamental. Voici quelques caractéristiques importantes des triangles en géométrie :

    • [Côtés et Sommets] :

Un triangle a trois côtés et trois sommets. Chaque côté est formé par deux sommets adjacents, et chaque sommet est le point de rencontre de deux côtés adjacents.

    • [Classification des Triangles] :

Triangle Équilatéral : Les trois côtés ont la même longueur. Triangle Isocèle : Au moins deux côtés ont la même longueur. Triangle Scalène : Aucun côté n'a la même longueur que les autres.

    • [Angles d'un Triangle] :

La somme des angles intérieurs d'un triangle est toujours 180 degrés (Théorème des angles d'un triangle). Chaque angle extérieur d'un triangle est égal à la somme des deux angles intérieurs non adjacents. Triangles Particuliers : Triangle Rectangle : Un triangle ayant un angle droit (90 degrés). Triangle Obtusangle : Un triangle ayant un angle obtus (supérieur à 90 degrés).Triangle Aigu : Un triangle ayant des angles aigus (inférieurs à 90 degrés).

      • [Médianes, Bissectrices, Hauteurs] :
        • [Médianes] : Segments reliant chaque sommet au milieu du côté opposé.
        • [Bissectrices] : Droites ou segments divisant les angles en deux angles égaux.
        • [Hauteurs] : Segments perpendiculaires aux côtés opposés, partant de chaque sommet.
    • [Théorème de Pythagore] :

Applicable aux triangles rectangles, il énonce que dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés. Les triangles sont omniprésents en géométrie, et de nombreux théorèmes et propriétés leur sont associés. Ils sont essentiels pour comprendre et résoudre divers problèmes géométriques.


More-didaquest.png Les triangles - Historique (+)


Définition graphique




Puce-didaquest.png Concepts ou notions associés


More-didaquest.png Les triangles - Glossaire / (+)



Puce-didaquest.png Exemples, applications, utilisations


Blue-circle-target.png UN mini lexique

  • L'hypoténuse d'un triangle est le côté le plus long de ce triangle, et il est opposé à l'angle droit (si le triangle est un triangle rectangle, c'est-à-dire un triangle qui a un angle égal à 90 degrés). Dans un triangle rectangle, l'hypoténuse est le côté situé en face de l'angle droit, et les deux autres côtés sont appelés les côtés adjacents et opposés.
  • Sommet Dans un triangle un sommet est l'endroit où deux côtés du triangle se rencontrent. Un triangle a toujours trois sommets, et chacun d'eux est formé par l'intersection de deux côtés adjacents. Les sommets sont souvent nommés en utilisant des lettres majuscules, généralement les premières lettres des points ou des variables qui représentent ces points.Par exemple, si les trois côtés d'un triangle sont AB,BC, et CA, alors les sommets seraient A, B, et C. Le sommet A est formé par l'intersection des côtés BC et CA, le sommet B est formé par l'intersection des côtés CA et AB, et le sommet C est formé par l'intersection des côtés AB et BC.Il est important de noter que les sommets d'un triangle déterminent également les angles du triangle. Par exemple, l'angle formé par les côtés AB et BC au sommet B est l'angle ABC.
  • Vertex:"Vertex" est le terme anglais équivalent à "sommet" en français lorsqu'on parle de triangles. Donc, si on parle du "vertex d'un triangle", cela se réfère au sommet du triangle, l'endroit où deux côtés du triangle se rencontrent.Par exemple, si vous avez un triangle avec des côtés AB, BC, et CA, les sommets seraient A, B, et C. Chacun de ces sommets est également appelé un "vertex" dans le contexte géométrique.
  • Base Dans un triangle la notion de "base" dépend du contexte spécifique dans lequel vous l'utilisez. Généralement, le terme "base" est associé à un triangle particulier souvent un triangle rectangle ou isocèle. Voici comment la base peut être définie dans ces contextes :
    • [Triangle Rectangle] :

Dans un triangle rectangle (c'est-à-dire un triangle qui a un angle droit), la base est généralement considérée comme le côté sur lequel repose le triangle. C'est le côté opposé à l'angle droit. Les deux côtés qui forment l'angle droit sont appelés les côtés de la base.

    • [Triangle Isocèle] :

Dans un triangle isocèle (c'est-à-dire un triangle avec au moins deux côtés de même longueur), la base est souvent considérée comme le côté qui n'est pas égal aux deux autres. Les côtés égaux sont appelés les côtés de base. Il est important de noter que dans un triangle quelconque, sans autre spécification, le terme "base" peut ne pas être aussi clairement défini. Le choix de la base dépend souvent du contexte ou de la manière dont le triangle est utilisé dans un problème ou une situation particulière.

L'altitude d'un triangle est une droite perpendiculaire à l'un de ses côtés, et elle passe par le sommet opposé à ce côté. En d'autres termes, l'altitude relie un sommet du triangle au côté opposé de manière perpendiculaire.Il existe trois altitudes dans un triangle, chacune associée à l'un des trois côtés. Les points d'intersection des altitudes avec les côtés peuvent être utilisés pour former des segments appelés hauteurs du triangle. Lorsqu'une altitude est tracée depuis un sommet d'un triangle, elle divise ce triangle en deux triangles plus petits, qui peuvent ou non être des triangles rectangles. Les propriétés des triangles obtenus à partir de l'altitude sont souvent utilisées dans la résolution de problèmes géométriques et dans les démonstrations mathématiques.Il est important de noter que l'altitude peut également être appelée hauteur dans certains contextes, en particulier lorsque l'on considère la longueur de la ligne perpendiculaire du sommet au côté opposé.

Une médiane d'un triangle est un segment de droite qui relie un sommet du triangle au point moyen (milieu) du côté opposé. Chaque triangle a trois médianes, une émanant de chaque sommet. Les trois médianes d'un triangle se croisent toujours en un point appelé le centre de masse ou le centre de gravité du triangle. Pour trouver le point d'intersection des médianes (le centre de gravité), vous pouvez prendre chaque paire de sommets opposés et tracer le segment de droite qui relie le sommet au milieu du côté opposé. L'intersection de ces trois segments est le centre de gravité.Les médianes ont certaines propriétés intéressantes.Les médianes se croisent toujours au centre de gravité du triangle.Chaque médiane divise le triangle en deux triangles de même aire.Le rapport dans lequel une médiane divise l'autre est 2:1. En d'autres termes, si G est le centre de gravité et M est le milieu du côté opposé, alors GM est deux fois plus long que MG.Les médianes sont largement utilisées dans la géométrie pour déterminer des points importants dans un triangle et pour résoudre divers problèmesgéométriques.

La bissectrice d'un angle dans un triangle est une droite ou un segment de droite qui divise cet angle en deux angles égaux ou de même mesure. Chaque angle d'un triangle a une bissectrice, et il y a trois bissectrices dans un triangle, une pour chaque angle.Les propriétés importantes des bissectrices dans un triangle incluent :Intersection en un point : Les trois bissectrices d'un triangle se croisent toujours en un point appelé le centre du cercle inscrit, qui est le centre du cercle inscrit dans le triangle.Divise le côté opposé : Chaque bissectrice divise le côté opposé au sommet dont elle émane en segments proportionnels aux côtés adjacents. En d'autres termes, si une bissectrice émane du sommet A et coupe le côté opposé BC en D, alors BD/CD = AB/AC. Les bissectrices sont souvent utilisées dans des problèmes géométriques et dans la détermination de points importants dans un triangle, comme le centre du cercle inscrit. Ces propriétés sont connues sous le nom de propriétés de la bissectrice intérieure d'un triangle. Il existe également des bissectrices extérieures, mais elles sont moins couramment utilisées.

Le théorème de Pythagore est l'un des résultats les plus fondamentaux en géométrie, et il s'applique aux triangles rectangles. Il énonce la relation entre les longueurs des côtés d'un triangle rectangle. Voici la formulation du théorème de Pythagore : Dans un triangle rectangle, le carré de la longueur de l'hypoténuse (le côté opposé à l'angle droit) est égal à la somme des carrés des longueurs des deux autres côtés, appelés les côtés de l'angle droit. Mathématiquement, cela peut être exprimé comme suit : C²=A²+B² où : C est la longueur de l'hypoténuse,A et B sont les longueurs des côtés de l'angle droit. Ce théorème est très utilisé pour résoudre des problèmes impliquant des triangles rectangles et pour vérifier si un triangle est effectivement rectangle. Il a des applications pratiques dans de nombreux domaines, y compris la trigonométrie et la résolution de problèmes liés à la distance et aux mesures dans l'espace.

La trigonométrie est une branche des mathématiques qui étudie les relations entre les angles et les côtés des triangles. Elle est largement utilisée pour résoudre des problèmes liés aux triangles, en particulier dans le contexte des triangles rectangles. Voici quelques concepts clés de la trigonométrie liés aux triangles :

    • [Les Rapports Trigonométriques dans un Triangle Rectangle] :

Dans un triangle rectangle, les principaux rapports trigonométriques sont définis en utilisant les côtés du triangle. Soient A, B, et C les longueurs des côtés du triangle rectangle, où C est l'hypoténuse, A est le côté adjacent à un angle, et B est le côté opposé à cet angle : sin(θ)= B/C(sinus),cos(θ)= A/C(cosinus),tan(θ)= B/A (tangente).

    • [Identités Trigonométriques]

Les identités trigonométriques sont des équations qui établissent des relations entre les fonctions trigonométriques. Par exemple, la plus célèbre est l'identité de Pythagore : Sin²(θ)+cos²(θ)=1 qui découle du théorème de Pythagore dans un triangle rectangle.Les Fonctions Trigonométriques Inverses : Les fonctions trigonométriques inverses (sin-1 , cos −1, 1tan −1, etc.) sont utilisées pour trouver les angles d'un triangle en fonction des longueurs de ses côtés.

Ces lois sont utilisées pour résoudre des triangles quelconques, pas seulement les triangles rectangles.

(ou d'autres formulations similaires). La trigonométrie est un outil puissant pour résoudre une variété de problèmes géométriques, notamment ceux liés aux triangles.

Un triangle équilatéral est un type particulier de triangle dans lequel les trois côtés ont la même longueur et tous les angles sont égaux. Plus précisément, dans un triangle équilatéral :

  • Longueurs des côtés : Les trois côtés, notés généralement A,B et C, ont la même longueur. On peut également noter cela comme A=B=C.
  • Angles : Les trois angles internes sont tous égaux à 60 degrés. Chacun des angles intérieurs du triangle équilatéral mesure 60 degrés, ce qui donne un total de 180 degrés pour l'ensemble des angles du triangle.
  • Un moyen de reconnaître un triangle équilatéral est de vérifier la symétrie. Si un triangle a une symétrie de rotation de 120 degrés, il est équilatéral.

Les propriétés du triangle équilatéral simplifient de nombreux calculs et constructions géométriques. Par exemple, dans un triangle équilatéral, les médianes, les hauteurs et les bissectrices sont toutes superposables et se confondent. De plus, le centre du cercle circonscrit au triangle équilatéral est également le centre de gravité et l'orthocentre. Ces propriétés font du triangle équilatéral un objet géométrique intéressant et souvent utilisé dans divers contextes mathématiques et scientifiques.

Un triangle isocèle est un type de triangle dans lequel au moins deux côtés ont la même longueur. Cela signifie que deux des trois côtés du triangle sont égaux entre eux. Ces côtés égaux sont appelés les côtés isocèles, et le troisième côté est appelé le côté non isocèle. En plus de la différence de longueur entre les côtés, un triangle isocèle peut également présenter certaines symétries. Par exemple, les angles opposés aux côtés isocèles sont égaux. Cela signifie que si AB=AC, alors l'angle opposé au côté AB (angle à C) est égal à l'angle opposé au côté AC (angle à B). Les propriétés d'un triangle isocèle peuvent être utilisées pour simplifier les calculs et les constructions géométriques. Par exemple, les médianes d'un triangle isocèle provenant des sommets opposés aux côtés égaux sont également des bissectrices et des hauteurs du triangle. La bissectrice issue du sommet opposé au côté non isocèle divise également l'angle en deux angles égaux. Dans un triangle isocèle : Au moins deux côtés ont la même longueur. Les angles opposés aux côtés isocèles sont égaux. Les médianes, hauteurs et bissectrices spécifiques ont des propriétés particulières dans un triangle isocèle. Triangle rectangle Un triangle rectangle est un type particulier de triangle qui possède un angle droit, c'est-à-dire un angle mesurant exactement 90 degrés. En d'autres termes, un triangle rectangle a un côté qui est perpendiculaire à un autre côté, formant ainsi un angle droit.Les côtés qui forment l'angle droit sont appelés les côtés de l'angle droit, et le côté opposé à l'angle droit est appelé l'hypoténuse. On peut utiliser le théorème de Pythagore dans un triangle rectangle pour décrire la relation entre les longueurs de ses côtés :C²=A²+ B² où :C est la longueur de l'hypoténuse,A et B sont les longueurs des côtés de l'angle droit. Les triangles rectangles sont particulièrement importants en trigonométrie, où les fonctions trigonométriques telles que le sinus, le cosinus et la tangente sont définies en fonction des rapports entre les côtés d'un triangle rectangle. Les côtés adjacents à un angle dans un triangle rectangle sont utilisés pour définir le cosinus, les côtés opposés définissent le sinus, et le rapport entre le côté opposé et le côté adjacent donne la tangente de l'angle.

Il n'y a pas un seul "théorème de l'aire dans un triangle" unique, car il existe plusieurs formules pour calculer l'aire d'un triangle en fonction de ses côtés et de ses angles. Voici les formules utilisées pour calculer l'aire d'un triangle :

    • [Formule de l'aire d'un triangle à partir de la base et de la hauteur]:

Aire=1/2×Base×Hauteur

    • [Formule de l'aire d'un triangle à partir des côtés (formule de Heron)] :

Si A, B, et C sont les longueurs des côtés d'un triangle, et S est le demi-périmètre (c'est-à-dire S= 1/2(a+b+c), alors l'aire (A) peut être calculée avec la formule de Heron :A=racine de[S⋅(S−A)⋅(S−B)⋅(S−C)].

    • [Formule de l'aire d'un triangle à partir de deux côtés et de l'angle entre eux] :

Si A et B sont les longueurs de deux côtés d'un triangle et θ est l'angle entre ces côtés, alors l'aire (A) peut être calculée avec la formule A=1/2×A×B×sin(θ) Il est important de choisir la formule appropriée en fonction des informations dont vous disposez sur le triangle (base et hauteur, côtés, angles, etc.). Les différentes formules offrent une flexibilité pour calculer l'aire en fonction des données disponibles.

Le théorème des angles d'un triangle énonce que la somme des trois angles intérieurs d'un triangle est toujours égale à 180 degrés. C'est une propriété fondamentale de la géométrie des triangles et peut être exprimée mathématiquement comme suit : ∠A+∠B+∠C=180° où ∠A, ∠B, et ∠C représentent les mesures des angles intérieurs du triangle, avec ∠A à côté BC,∠B à côté AC, et ∠C à côté AB. Ce théorème est vrai pour tous les triangles, qu'ils soient équilatéraux, isocèles, rectangles ou scalènes. Quelle que soit la forme du triangle, la somme de ses angles intérieurs est constamment égale à 180 degrés. Le théorème des angles d'un triangle est fondamental pour de nombreuses démonstrations et applications en géométrie.

Le théorème de l'angle extérieur d'un triangle énonce que l'angle extérieur d'un triangle est égal à la somme des deux angles intérieurs non adjacents à cet angle extérieur. Mathématiquement, cela peut être exprimé comme suit : Mesure de l’angle extérieur = Mesure de l’angle non adjacent 1 + Mesure de l’angle non adjacent 2 ou en utilisant des notations d'angles, si ∠A, ∠B, et ∠C sont les angles intérieurs d'un triangle, alors l'angle extérieur à l'angle ∠A serait égal à ∠B+∠C. Ce théorème est valable pour tous les triangles, qu'ils soient équilatéraux, isocèles, rectangles ou scalènes. Il a des applications importantes en géométrie et est souvent utilisé pour résoudre des problèmes impliquant les angles d'un triangle.

Le théorème de la médiane d'un triangle énonce que dans un triangle, chaque médiane divise le côté opposé en deux segments de longueur égale, créant ainsi deux triangles de même aire. En d'autres termes, la médiane d'un triangle équilibre la longueur du côté opposé. Mathématiquement, cela peut être exprimé comme suit : Soit ABC un triangle, et AD une médiane issue du sommet A, où D est le point de la médiane situé sur le côté opposé BC. Alors, la longueur de BD est égale à la longueur de CD, et les aires des triangles ABD et ACD sont égales.Graphiquement, cela peut être illustré comme suit :Aire(△ABD)=Aire(△ACD) Cela est vrai pour chaque médiane dans un triangle, peu importe le sommet à partir duquel elle est tracée. Les médianes jouent un rôle important dans la géométrie des triangles et sont souvent utilisées pour déterminer le centre de masse (ou centre de gravité) d'un triangle, qui est également le point d'intersection des trois médianes.

Le théorème de la bissectrice dans un triangle énonce que, dans un triangle, la bissectrice d'un angle divise le côté opposé à cet angle en segments proportionnels aux côtés adjacents à l'angle. Mathématiquement, cela peut être exprimé comme suit : Soit ABC un triangle, et AD la bissectrice de l'angle ∠A, où D est le point où la bissectrice rencontre le côté opposé BC. Alors, le rapport des longueurs des côtés BD et CD est égal au rapport des longueurs des côtés AB et AC, c'est-à-dire :BD/CD= AB/AC ​Graphiquement, cela signifie que la bissectrice divise le côté opposé en segments dont les longueurs sont proportionnelles aux côtés adjacents à l'angle dont elle est la bissectrice. Ce théorème est utile dans divers contextes géométriques et est souvent utilisé pour résoudre des problèmes liés aux triangles, notamment pour trouver des longueurs ou des rapports de longueurs dans un triangle.



Blue-circle-target.png Les triangles ont de nombreuses applications dans la vie quotidienne, dans divers domaines allant de l'architecture à la navigation en passant par les sciences naturelles. Voici quelques exemples d'application et d'utilisation des triangles :

Les architectes utilisent des concepts géométriques, notamment des triangles, pour concevoir des structures stables. La trilatération (utilisant des triangles) est également utilisée pour la localisation précise dans la construction.

Les satellites GPS utilisent des principes triangulaires pour déterminer la position précise d'un récepteur GPS. La triangulation est utilisée pour calculer la distance entre le récepteur et plusieurs satellites. Informatique graphique : Les graphiques informatiques utilisent souvent des triangles pour modéliser des surfaces et des objets tridimensionnels. C'est la base de la modélisation 3D.

Les géodésiens utilisent la triangulation pour mesurer et cartographier de vastes étendues de terrain. Cela aide à établir des réseaux de points géodésiques pour déterminer des distances et des emplacements précis.

En optique, les prismes triangulaires sont utilisés pour décomposer la lumière en ses différentes couleurs (spectre).

Dans les sciences naturelles, les biologistes et les géologues utilisent la triangulation pour étudier la distribution des espèces ou analyser des formations géologiques.

La navigation utilise des triangles pour déterminer des positions, des capes et des distances. Le triangle de navigation est une application importante en navigation maritime et aérienne.

Les charpentiers et les menuisiers utilisent des triangles pour mesurer et couper des angles précis. L'équerre, un instrument basé sur le triangle, est largement utilisée dans ces domaines. Calcul des distances inaccessibles : La méthode de la triangulation est utilisée pour mesurer des distances inaccessibles directement. Par exemple, la mesure de la hauteur d'une montagne à l'aide d'un théodolite.

Les ingénieurs électriques utilisent des triangles pour analyser des circuits électriques, en particulier avec les transformateurs et les réseaux électriques. Ces exemples montrent la diversité des applications des triangles dans différents domaines, soulignant leur importance fondamentale en mathématiques appliquées et en sciences appliquées.


(+)


Puce-didaquest.png Erreurs ou confusions éventuelles



Puce-didaquest.png Questions possibles



Puce-didaquest.png Liaisons enseignements et programmes

Idées ou Réflexions liées à son enseignement



Aides et astuces



Education: Autres liens, sites ou portails




Puce-didaquest.png Bibliographie