Les triangles

De Didaquest
Aller à la navigationAller à la recherche


Autres Fiches Conceptuelles
Posez une Question


(+)

Target Icon.pngVotre Publicité sur le Réseau Target Icon.png

Puce-didaquest.png Traduction


More-didaquest.png Traductions


Puce-didaquest.png Définition

Domaine, Discipline, Thématique


More-didaquest.png Justification


Définition écrite


  • ......................................................................

....................................................................... ....................................................................... .......................................................................

  • ......................................................................

....................................................................... .......................................................................


More-didaquest.png Les triangles - Historique (+)


Définition graphique




Puce-didaquest.png Concepts ou notions associés

{{Fiche Didactique Mots-clés

  • L'hypoténuse d'un triangle est le côté le plus long de ce triangle, et il est opposé à l'angle droit (si le triangle est un triangle rectangle, c'est-à-dire un triangle qui a un angle égal à 90 degrés). Dans un triangle rectangle, l'hypoténuse est le côté situé en face de l'angle droit, et les deux autres côtés sont appelés les côtés adjacents et opposés.
  • Sommet Dans un triangle un sommet est l'endroit où deux côtés du triangle se rencontrent. Un triangle a toujours trois sommets, et chacun d'eux est formé par l'intersection de deux côtés adjacents. Les sommets sont souvent nommés en utilisant des lettres majuscules, généralement les premières lettres des points ou des variables qui représentent ces points.Par exemple, si les trois côtés d'un triangle sont AB,BC, et CA, alors les sommets seraient A, B, et C. Le sommet A est formé par l'intersection des côtés BC et CA, le sommet B est formé par l'intersection des côtés CA et AB, et le sommet C est formé par l'intersection des côtés AB et BC.Il est important de noter que les sommets d'un triangle déterminent également les angles du triangle. Par exemple, l'angle formé par les côtés AB et BC au sommet B est l'angle ABC.

|Mot-Clé-3=vertex |Mot-Clé-4= Base |Mot-Clé-5= Altitude |Mot-Clé-6= Médiane |Mot-Clé-7= Bissectrice |Mot-Clé-8= Théorème de Pythagore |Mot-Clé-9= Trigonométrie |Mot-Clé-10= Triangle équilatéral |Mot-Clé-11= Triangle isocèle |Mot-Clé-12= Triangle rectangle |Mot-Clé-13= Théorème de l'aire |Mot-Clé-14= Théorème des angles d'un triangle |Mot-Clé-15= Théorème de l'angle extérieur |Mot-Clé-16= Théorème de la médiane |Mot-Clé-17= Théorème de la bissectrice |Mot-Clé-18= Géométrie du triangle |Mot-Clé-19= Triangulation |Mot-Clé-20= Transformation de similitude |Mot-Clé-21= Sphère trigonométrique |Mot-Clé-22= Théorème de l'inégalité triangulaire |Mot-Clé-23= Triangle scalène |Mot-Clé-24= Triangle obtusangle |Mot-Clé-25= Triangle acutangle |Mot-Clé-26= Théorème d'Héron |Mot-Clé-27= Triangle de Pascal |Mot-Clé-28= Centre de gravité (centroïde) |Mot-Clé-29= Théorème de l'angle inscrit |Mot-Clé-30= Triangle de Sierpinski |Mot-Clé-31= Triangle de Penrose |Mot-Clé-32= Triangle aplati


}}

Puce-didaquest.png Exemples, applications, utilisations

  • ...............................................................................

................................................................................ ................................................................................ ................................................................................

  • ...............................................................................

................................................................................ ................................................................................ ................................................................................


(+)



Puce-didaquest.png Erreurs ou confusions éventuelles



Puce-didaquest.png Questions possibles



Puce-didaquest.png Liaisons enseignements et programmes

Idées ou Réflexions liées à son enseignement



Aides et astuces



Education: Autres liens, sites ou portails




Puce-didaquest.png Bibliographie