Histoire des éclogites et de leur interprétation géodynamique

De Didaquest
Aller à la navigationAller à la recherche
Target Icon.pngVotre Publicité sur le Réseau Target Icon.png

Selection.png Sélection d'articles

Domaine, Discipline, Thématique


Résumé - Abstract


  • Abstract.

Haüy coined the term " eclogite ", meaning " chosen rock ", in 1822, but de Saussure had already observed rocks of this type in the Alps four decades earlier. Throughout the 19th century, the origin of eclogite remained an enigma. It was thought to be either an igneous rock of gabbroic composition or a metamorphosed gabbro. This second hypothesis became preferred when progressive transitions were observed between gabbros and eclogites. In 1903, simply by comparing the molar volumes of gabbroic and eclogite parageneses, Becke inferred that eclogite was the high-pressure equivalent of gabbro. In 1920, eclogite was involved in the conception of the metamorphic facies by Eskola. However, a few researchers denied the existence of an eclogite facies, and claimed that high stress instead of high lithostatic pressure could generate eclogites. In the 1960s, consideration of the water pressure parameter also favoured the belief that eclogite was simply the anhydrous equivalent of amphibolite. Finally, eclogite was definitely considered as a high-pressure metamorphic rock following the development of experimental petrology and the application of thermodynamics.

Eclogites have been involved in several geodynamic theories. Around 1900, kimberlite studies favoured the idea that eclogite might be abundant in the interior of the Earth. In 1912, Fermor predicted the existence of a dense eclogite-bearing zone in the mantle. This " eclogite layer " hypothesis was still envisaged as late as 1970. The alternative " peridotite " hypothesis became preferred when experimental investigations demonstrated that the gabbro-to-eclogite transition could not coincide with a sharp Mohorovi?i? discontinuity. Before plate tectonics, high-pressure belts were interpreted as remnants of ophiolite-bearing geosynclines, metamorphosed by loading during thrust faulting. After the acceptance of plate tectonics, around 1970, the same high-pressure Alpine-type belts came to be considered as former oceanic crust, transformed into eclogite within subduction zones, and subsequently incorporated into mountain belts. Surprisingly, formation of eclogite in " subsidence " zones (i.e. subduction zones) had already been envisaged as early as 1931 by Holmes, the inventor of a convection-current theory. In the 1980s, many authors tried to apply the model of Alpine-type high-pressure belts to eclogites enclosed within the gneisses of ancient orogens, but the question remains obscure nowadays. Some of these eclogite-facies rocks have been a matter of considerable interest during the last two decades, after the discovery, of coesite and diamond in them. Currently, the debate is focused on the geodynamic mechanisms responsible for the exhumation of such ultra-deep crustal rocks.

  • Key-words : history - petrology - metamorphism - geodynamics - XIXth century - XXth century.


Puce-didaquest.png Démarche méthodologique



Puce-didaquest.png Postures - Conceptions



Puce-didaquest.png Concepts éducation ou didactique associés


References
Références


Liens de publications relatives aux 5 Mots-Clés Principaux

Science Education

Openedition

Hal.archives

Cairn



Puce-didaquest.png Concepts ou notions associés


References
Références


Liens de publications relatives aux 5 Mots-Clés Principaux

Onlinelibrary

Openedition

Hal.archives

Cairn



Puce-didaquest.png Bibliographie


Puce-didaquest.png URL de l'article



Target Icon.pngVotre Publicité sur le Réseau Target Icon.png


Fairytale key enter-2.png

Sélection d'articles